
Visualizing QUIC andHTTP/3 with qlog and qvis
Robin Marx

Hasselt University – tUL – EDM
Diepenbeek, Belgium

robin.marx@uhasselt.be

Wim Lamotte
Hasselt University – tUL – EDM

Diepenbeek, Belgium
wim.lamotte@uhasselt.be

Peter Quax
Hasselt University – tUL –
Flanders Make - EDM
Diepenbeek, Belgium

peter.quax@uhasselt.be

Figure 1: A QUIC+HTTP/3 and TCP+TLS+HTTP/2 trace visualized in the Packetization Diagram. The x-axis is in
bytes received. Alternating colors on each row indicate the switch to a new TCP/QUIC packet, TLS record,

QUIC/HTTP frame or HTTP stream. Elements that align vertically are packed into the lower layer’s payload.

1 INTRODUCTION&MOTIVATION
The new QUIC and HTTP/3 (H3) protocols being finalized
by the IETF are powerful but also highly complex. They com-
bine advanced approaches from predecessors such as TCP
(e.g., congestion and flow control, reliability) and HTTP/2
(H2) (e.g., streammultiplexing, prioritization), with cutting-
edge features (e.g., 0-RTT data, connection migration). As
QUIC runs on top of UDP, these intricate systems have to
be re-implemented from scratch, often in userspace, which
has turned out to be error-prone. QUIC also fully integrates
TLS 1.3 and is end-to-end encrypted at the transport layer.
This means that, unlike with TCP, elements like packet and
acknowledgement numbers are indiscernible to passive ob-
servers in encrypted packet traces (e.g., .pcap files analyzed
with tools likeWireshark).Assuch,QUICrequires (ephemeral)
TLS keys for even high-level analysis, leading to scalability,
privacy and security issues. It is clear that QUIC+H3’s overall
complexity and heavy security focus make them difficult to
implement, debug, observe, analyse, use and teach in practice.
Since 2018 [1] we have been working on two intertwined

projects to aid in conquering this challenge. Firstly, we pro-
posed a paradigm shift from using packet traces to logging
information directly at the endpoints instead (e.g., client
and server, but also CDN nodes and load balancers). This
is accomplished with qlog, a standard structured logging for-
mat1. The qlog specification defines how common events (e.g.,
packet_sent) and their metadata (e.g., header fields, packet
size) canbe loggedusing JSON,making themreadable for both
humans andmachines. To get around the privacy and security
issues, endpoints can themselves decide which event data to
log and expose (e.g., being very succinct in a live deployment
but more verbose during debugging), independent fromwhat

1https://github.com/quiclog/internet-drafts

they send on the wire. Additionally, this allows endpoints to
log detailed internal state typically not transferred to the peer
directly (e.g., a congestion_metric_updated event logging the
current congestion window and RTT estimates), which in
turn helps with deep root-cause analysis. Our qlog approach
has since found broad adoption in the QUIC community, with
12 out of 18 active QUIC implementations2 supporting the
format (including Cloudflare, Mozilla, NodeJS and especially
Facebook, who log 30 billion qlog events in production daily).

Secondly, we have implemented qvis, an open-source suite
of interactive web-based tools that visualize the protocols’
behaviours3. The tools can ingest qlog files directly, as well
as decrypted .pcaps, which are automatically transformed
into (partial) qlogs (lacking the internal endpoint state). Gen-
eral purpose tools (like the Sequence Diagram or Statistics
overview) allow users to get an initial idea of which problems
can be present in a connection trace. More specialized visual-
izations (like the Congestion, Multiplexing and Packetization
diagrams) then allow focused, in-depth analysis. The qvis
tools have since been used by us andmany others (e.g., Cloud-
flare4) to find and fix bugs and inefficiencies in the protocol
implementations. Our demo will use real-world examples of
high-impact bugs to demonstrate the effectiveness of our qvis
tools and method (see §2).
It should be noted that some of the demo examples are

also part of the dataset of our accepted submission to the SIG-
COMM’20 EPIQ workshop5. However, we want to bring our
approach to the attention of the wider academic SIGCOMM
audience for two main reasons. Firstly, because we have re-
cently started extending our approach to other protocols as
2https://github.com/quicwg/base-drafts/wiki/Implementations
3https://github.com/quiclog/qvis
4https://blog.cloudflare.com/cubic-and-hystart-support-in-quiche
5https://qlog.edm.uhasselt.be/epiq

1

https://github.com/quiclog/internet-drafts
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quiclog/qvis
https://blog.cloudflare.com/cubic-and-hystart-support-in-quiche
https://qlog.edm.uhasselt.be/epiq


Submitted for review to SIGCOMM, 2020 Marx et al.

Figure 2: Partial Multiplexing Diagrams for three different QUIC stacks sending 10 1MB files in parallel. Each
small colored rectangle is one packet belonging to a file. Long colored areas indicate sequential scheduling. Black

areas indicate which frames above them contain retransmitted data. Data is sent from left to right.

Figure 3: The Sequence Diagram accurately shows
packet loss (red X) and re-ordering (crossing lines).

well. For example, for TCP+TLS+H2, we combine (decrypted)
.pcaps with internal state from eBPF kernel probes and H2
browser logs so we can use the qvis tools to analyse these pro-
tocols in-depth as well (this will also be part of the demo, see
Figure 1 B ). Secondly, because we feel our general endpoint-
logging approach and tooling can be the basis of a powerful
method for both teaching and researching protocols going
forward. For both aspects, we hope to create broader aware-
ness in the networking community and to gain additional
insights and feedback to help better steer our further efforts.

2 DEMOCONTENTS
The demowill first shortly introduce the qlog format itself and
the benefits it provides. Then, we explain qvis features using
traces containing bugswe and others encountered in 15 differ-
ent QUIC codebases (we have dozens of traces available, and
will select depending on the length of the demo and interest of
the audience). During the demo, attendees will not only learn
about our visualizations and how to use them, but also about

advancedQUIC andH3protocol features and implementation
details. We will focus on four main visualizations:

Firstly, the Sequence Diagram plots different viewpoints
of the same connection (e.g., client and server in Figure 3) on a
vertical timeline. By correlating events across traces, the tool
accurately shows RTTs, packet loss, and re-ordering/jitter.
This helps find issues in QUIC’s complex connection hand-
shake (e.g., deadlocks during high loss) and 0-RTT handling
(e.g., one stack did not use congestion control for early data).

Secondly, similar to tcptrace’s Time-Sequence diagram, the
Congestion Graph (not shown here) plots data sent and
acknowledgements received, as well as current congestion
window, bytes in flight, RTTmeasurements and flow control
limits. This helps to verify congestion controller implementa-
tions and advanced features (e.g., pacing and hystart), as well
as to identify when a sender is limited by flow control.

Thirdly, theMultiplexing Diagram color-codes streams
to show how their data chunks are interleaved by the sender.
This allows quick identification of weird anomalies in ex-
pected patterns (e.g., the sequential period in a normally
Round-Robin scheduler in Figure 2 1 , or 3 sending data
in Last-In First-Out order (instead of FIFO)). Additionally, the
tool highlights howQUIC data retransmissions are scheduled
(black areas), which can diverge greatly from TCP’s approach
(e.g., 2 interleaves retransmissions with new data). It also
visualizes the impact of Head-of-Line blocking (not in Fig. 2).

Finally, the Packetization Diagram shows how protocol
units (frames, records and packets) are sized, combined and
packed.Thishighlightswire-formatefficiency (e.g., inFigure1
A , theQUIC stack sometimes did not bundle small H3 frames
together correctly, sending a tiny packet for each instead) and
cross-layer interactions (e.g., in B , all application data was
unnecessarily flushed to a new TLS record whenever a 9-byte
H2 frame header was written).

REFERENCES
[1] Robin Marx, Wim Lamotte, Jonas Reynders, Kevin Pittevils, and Peter

Quax. 2018. TowardsQUICDebuggability. In Proceedings of theWorkshop
on the Evolution, Performance, and Interoperability of QUIC (EPIQ’18).
ACM, 1–7. https://doi.org/10.1145/3284850.3284851

2

https://doi.org/10.1145/3284850.3284851


Visualizing QUIC and HTTP/3 with qlog and qvis Submitted for review to SIGCOMM, 2020

TECHNICALREQUIREMENTS
There should be no special technical requirements for this
demo.The tools andall example tracesareavailableonline (see
https://qvis.edm.uhasselt.beandhttps://qlog.edm.uhasselt.be/
sigcomm), so attendees can follow along at home and even
explore the examples on their own terms.
A short video demonstrating qvis for this proposal can be

found at https://youtu.be/vg2ss3NIVIU.

3

https://qvis.edm.uhasselt.be
https://qlog.edm.uhasselt.be/sigcomm
https://qlog.edm.uhasselt.be/sigcomm
https://youtu.be/vg2ss3NIVIU

	1 Introduction & Motivation
	2 Demo contents
	References

