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FlowControl
category (FC) 2 1 1 1 1 2 1 1 1 1

Multiplexing scheduler SEQ RR RR RR SEQ SEQ RR RR RR RR

Retransmission
approach (RA) 2 1 2 3 2 2 2 1 2 2

0 RTT approach (ZR) 1 1 2 3 1 2 2 1 2 1

DATA frame size large medium small large small large large small large small

Worst case packetization
goodput efficiency 90.34% 95.02% 92.54% 90.88% 87.94% 91.52% 83.92%

Dynamic packet
sizing (PMTUD) ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Acknowledgment
frequency (#packets) 1 2-10 2-8 10 2-4 2-6 2-9 1 2

Congestion Control (CC)
NewReno | Cubic | BBR ✓| ✗| ✗ ✗| ✓| ✓ ✗| ✓| ✓ ✓| ✓| ✓ ✓| ✗| ✗ ✓| ✓| ✓ ✗| ✓| ✗ ✓| ✓| ✗ ✓| ✗| ✗ ✓| ✗| ✗

Table 1: Selective behavioral comparison of 10 prevailing IETF QUIC implementations Empty slots indicate we do
not have results for this data point. SEQ = Sequential, RR = Round-Robin

ABSTRACT
The QUIC and HTTP/3 protocols are quickly maturing to-
gether with their implementations, though many of their
low-level behaviours are not yet well-understood. To help
improve this,weempirically compare15 IETFQUIC/H3 imple-
mentations for advanced features like Flow and Congestion
Control, 0-RTT, Multiplexing, and Packetization. We find a
large heterogeneity between stacks, discuss uncovered bugs
and conclude that most implementations are not fully opti-
mized or validated yet.We argue that futureworkmust priori-
tize rigorous root-cause analysis of observed behaviours, and
show this is possible by employing our qlog and qvis tools.

1 INTRODUCTION&MOTIVATION
In 2020, after nearly four years, the new QUIC and HTTP/3
(H3) protocol specifications [7, 24] are finally nearing com-
pletion. This long period is a testament to their complexity, as

they combine decades of best practices, lessons learned from
TCP, SCTP andHTTP/2 (H2), and advanced new features (like
zero Round-Trip-Time (RTT) connection establishment) into
a newWeb protocol suite. To help verify that the protocols’
design choices actually hold up in practice and to prepare for
deployment, several parties have been continuously updat-
ing over 18 different QUIC/H3 implementations [2]. These
stacks are regularly tested on their so-called “interoperabil-
ity”, whereby clients from one implementation test features
of servers from other codebases. This is done both manually
and automatically in projects such asQUICTracker andQUIC
Interop Runner [3, 35]. Despite this, bugs are still regularly
uncovered (several by our research) and the more advanced
features are often not yet well supported or finetuned.
This is partly because existing tests mainly consider com-

patibility of the protocols’ binary wire image and the manda-
tory parts of the specifications (i.e., MUST andMUST NOT).
There are however many protocol features and situations
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for which the guidelines are much less clear and up to the
developer’s choice. These features, such as FlowControl, Con-
gestion Control, Data Multiplexing, Packetization, and 0 RTT
are often more difficult to evaluate in an automated fash-
ion, yet arguably can have a large impact on protocol perfor-
mance and behaviour. A good example of this can be found
in H2’s highly complex Prioritization setup [41], which con-
trols how bandwidth is distributed across concurrent Web
page resource downloads (§3.2). This systemwas added late
in H2’s design and poorly validated prior to deployment. Con-
sequently, even today, 5 years after the protocol’s standard-
ization, many H2 servers and clients do not properly support
this feature [13, 30, 41], and it was decided to fully redesign it
for H3 [32]. As such, we feel it is imperative to evaluate im-
plementations of these more loosely defined QUIC features.
While there is some prior academic work that evaluates

some of these aspects for QUIC [8, 11, 31], most of it is older
and outdated, as it considers Google’s initial QUIC version
(gQUIC) [17]. While gQUIC and IETF QUIC are similar in
concepts, their implementation details are fundamentally di-
vergent. Furthermore, several critical evaluations have shown
that some research lacked scientific rigor and root-cause anal-
ysis, often misconfiguring their evaluated implementations,
and potentially reaching erroneous conclusions [16, 18]. We
additionally believe that the relatively low interest [33, 34, 37]
of the academic community in IETF QUIC since the early
research is due to the protocol’s complexity and rapid evolu-
tion/unstableness. We however identified this problem early,
recognizing the need for advanced QUIC debugging and anal-
ysis techniques. To this end, in 2018 we proposed qlog, a stan-
dardized endpoint logging format, and the accompanyingqvis
visualizations and tools [26, 28, 29]. Both qlog and qvis have
found broad uptake in the IETF QUIC community since, with
12/18 implementations outputting qlog, and qvis providing
advanced analysis tools for several protocol features.
As such, as the protocols, their implementations and our

tools are reaching maturity, we feel it is now finally time
to evaluate if they are ready to be deployed, researched and
evaluated. In this work, we use qlog and qvis to assess imple-
mentation differences between and maturity of 15 of the 18
active IETF QUIC and H3 implementations. Our results for 10
of those stacks are summarized in Table 1. As other previously
mentioned projects target interoperability testing [3, 35], we
instead focus on protocol aspects that are difficult to automati-
callymeasure and that are expected to have a highmeasure of
heterogeneity across implementations (§3). We indeed iden-
tify large differences between implementations and find that
many advanced features are not yet tuned or validated in
many stacks. Still, we conclude that with the powerful qlog
andqvis tooling, properanalysisof implementationbehaviour
is possible, and thus researchers can start evaluating QUIC.

2 EXPERIMENTALMETHODOLOGY
To deeply evaluate 15 QUIC implementations in a manage-
able amount of time, we rely heavily on the structured qlog
format [29]. As 12 QUIC stacks output qlog, it is feasible to
have always at least one end of a cross-implementation con-
nection outputting this format (and often both).We then both
automatically process qlogs with scripts, and evaluate them
manually via the qvis visualizations [26]. We use twomain
qlog sources: firstly, the QUIC interop runner tests [3], which
employ an ns-3 network emulation setup between dockerized
versions of 10 different QUIC stacks. While these tests do not
explicitly consider our targeted behaviours, some of them
can be used to obtain the insights we require (e.g., concurrent
file transfer tests also allow observing Flow Control updates
§3.1). Secondly, we adapt the aioquic client [1] to automati-
cally vary configuration parameters in test runs against QUIC
servers. We do not run these servers ourselves, but instead
make use of the fact that most implementers already provide
public Internet endpoints for manual interoperability tests.
This allows us to test even non-open source servers and lets us
compare configurations between different endpoints backed
by the same implementation. For example, the mvfst stack is
deployed on a test server and also on Facebook.com, and both
setups show marked differences. To eliminate behavioural
artefacts due to real network variations, we run our tests a
minimum of 5 times on two differentWANnetworks: first the
Hasselt University network (1 Gbps downlink/10Mbps up)
and second a residential Wi-Fi network (35Mbps/2Mbps).

Wewere unable to test all targeted features across all QUIC
implementations. Firstly, 3/18 stacks were not considered, as
they are not open source, do not provide an endpoint, and/or
are not mature enough. For the others, we focus on the 10
most feature-complete and open source stacks (see Table 1).
The remaining 5 were tested to the extent possible. In §3 we
indicate the amount of stacks evaluated for each feature. After
both automated and manual analysis we further validate our
results. Firstly, by performing source code reviews where
possible. Secondly, by asking each stack’s main implementers
to confirm and comment on our conclusions, via the quicdev
Slack group [4]. As such, almost none of the results presented
in this paper are based on conjecture, as most have been
explicitly validated by their original developers.
Our results were gathered intermittently over a 4-month

period (Jan-Apr 2020) and on IETF QUIC draft versions 25-
27. As several implementations considerably changed their
behaviours over time (partially due to insights fromourwork),
we re-tested all changed stacks. The results presented here
reflect the state of the art in earlyMay 2020. Source code for all
our tools, full result analysis sheets, source qlogfiles and other
artefacts can be found at https://qlog.edm.uhasselt.be/epiq.
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Figure 1: Connection and Stream-level Flow Control allowances for 4 QUIC stacks. A, B and C show concurrent
downloads of 3 files (2MB, 3MB, 5MB). D shows a single 10MB download.

3 RESULTS
3.1 FlowControl
When downloading, an endpoint must reserve a transport-
level receive buffer to store incoming data, both because
data can arrive out-of-order (but can only be delivered to the
application-layer in-order) and because the speed at which
the application reads from the transport can be lower than
the network bandwidth. To prevent overshooting this buffer’s
capacity, endpoints utilize a FlowControl (FC) system to have
the sender match its transmission rate to the speed at which
the receive buffer can be emptied. For TCP, which abstracts
transported data as a single, ordered byte stream, its singular
“receive window” bounds the active bytes in flight allowance
and grows and shrinks over time (e.g., a receive window of
0 means a sender should stop sending). In contrast, QUIC
allows multiple concurrently active data streams (§3.2), and
thus also defines a per-stream FC allowance, in addition to a
connection-wide limit. QUIC’s limits are expressed in maxi-
mum byte stream offsets [24], meaning they can never shrink
and only grow in absolute values. Updates to these limits are
communicated inMAX(_STREAM)_DATA frames, yet it is up
to the developer to decide on the frequency of and allowance
amount included in these frames. This is an important aspect
to get right, as too few or too low limit updates can stall a fast
sender, even if the receive buffer is not fully occupied as the
receiver’s updates take a RTT to reach the sender [24]. We
identify three main approaches (see also Figure 1):

FC1 static allowance A : the receive buffer size stays un-
changed and the maximum allowance increases linearly.

FC2 growing allowance C : the receive buffer size grows
over time, causing a non-linear relationship.

FC3 autotuning: the receive buffer size is dynamic, based
on RTT estimates and application data consumption rate [40].
Interestingly, we find no current QUIC stacks do the more
advanced FC3. Just 3/11 do FC2, while most of the 8/11 stacks
doing FC1 simply simply update their absolute FC limits by
adding the static buffer size once the receiving application

has consumed 50% of the incoming data. Some however do
show interesting variations. Firstly, quiche employs FC2 and
updates at the 50% mark, but does not add the full buffer
size. Instead it adds the amount of bytes the application has
consumed (i.e., with every update, the allowance increase is
halved, which in turn leads to an increasing update frequency
to keep the total allowance static B ). Secondly, quant uses
FC1, but allows stream-level allowance to grow beyond the
connection-level limit D , which could stall fast senders.

By the implementers’ own admission, the presence of these
weird behaviours and absence of smarter schemes, is because
most have not yet spent time fine-tuning FC approaches and
memory requirements. To prevent stalling the sender, many
simply set high initial allowances (e.g., 10MB in B , 15MB
in Google Chrome) and update early (the 50% mark). Many
even asked us for guidance in choosing a better FC approach.
However, as QUIC is fundamentally different from TCP in
this respect, it is difficult to assess which approach works
best in practice. Facebook’s approach ( A ) does give us an
indication, as they have tweaked their behaviour in a real-life
deployment. However their setup is also not foolproof (see
§3.2), they are biased towards their specific use-case (loading
content in native apps), and indicate being limited by exist-
ing application layer logic that was originally tweaked for
TCP+H2 (e.g., setting higher initial FC limits would cause the
app to aggressively preload resources, causing bandwidth
contention). In all, we can say QUIC FC is an open problem.

3.2 Multiplexing & Prioritization
TCP abstracts its connection as a single, fully ordered and
reliable byte stream.This does performoptimally in situations
where multiple, independent data streams can be in progress
at the same time (e.g., loading a Web page’s resources). H2
attempted toget around this bydefining the conceptof concur-
rent byte streams at the application layer, yet this still mapped
badly toTCP’s single streamviewpoint (e.g., theHead-of-Line
(HOL) Blocking problem [27]). This is one of the motivations
behindQUIC,which insteadmakes streamsfirst-class citizens
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Figure 2: Multiplexing behaviour across different QUIC stacks when downloading 10 1MB files in parallel. Each
small colored rectangle is one packet belonging to a file. Long colored areas indicate sequential scheduling. Black

areas indicate which frames above them contain retransmitted data. Data arrives from left to right.

in the transport layer. A crucial aspect of handling multiple
concurrently active byte streams is how to divide a sender’s
available bandwidth among them. This can be done in two
main ways, see Figure 2. Firstly, a Round-Robin (RR) sched-
uler ( 1 , 2 ) divides bandwidth among various streams (either
fairly or with different streamweights) by splitting resources
into smaller chunks and interleaving them. Secondly, a se-
quential scheduler ( 3 , 4 ) sends all (available) data for a single
stream before allocating bandwidth to the next. The optimal
approach often depends on the application semantics. For
example, both H2 and H3 use a “prioritization” system to
drive this behaviour [27, 32, 41] (though H3’s system is not
yet mature enough to evaluate). However, as QUIC is sup-
posed to be a general purpose transport protocol, it should
also have sensible default transport-layermultiplexing.Again
though, the QUIC texts leave it fully up to the developer to
determine what this behaviour should be. This is clearly vis-
ible in the default approaches taken by the different stacks.
We find 9/13 stacks to employ a form of RR (6/9 switching
streams each QUIC packet, 2/9 switching every 4-10 packets,
and 1 unexpectedly switching only after filling the current
cwnd (§3.4)). 4/13 stacks opt for a sequential variant instead,
though we originally found 3 of them to erroneously sending
data in Last-In First-Out (LIFO) order 4 , typically thought to
be a worst-case approach [38] (2/3 have since changed their
approach to FIFO). The optimal approach is however more
difficult to determine at this time and requires further study.
A peculiar interaction between Flow Control (FC, §3.1)

and stream scheduling was observed when downloading 10
concurrent 1000000 byte (1MB) files from the mvfst server 1 .
There, a clearly anomalous sequential period is visible for the
yellow (first) stream. This was due to our aioquic testclient
setting both the connection and stream-level initial FC limits
to 1048576 bytes (1MiB). mvfst processes requests 1-by-1 and
fully buffered the first file. For the second request, only 48576
bytes remained of the connection FC limit, so only that much
was prepared,while requests 3-10were placed on-hold.When

the RR scheduler kicked in, stream 1was initially multiplexed
with stream2. Soon the stream2data ranout and the scheduler
had only stream 1 data available, until the client’s connection
FC update allowed the server to buffer more stream data.
It is clear from this example that FC can have (unintended)
impactful interactions with streammultiplexing.
A final aspect is howQUIC arranges retransmissions. As

TCP’s single byte stream abstraction is fully ordered, its re-
transmissions are always given the absolute highest prece-
dence. However, QUIC’s per-stream loss detection and or-
dering means that retransmissions can be scheduled much
like “new” data. Conceptually,we can define 4Retransmission
Approaches (RAs), see also Figure 2. The following example
sequences assume a fair RRmultiplexer that needs to schedule
8 packets, 2 for each stream A, B, C, and D, where A and B’s
packets contain retransmissions, versus C and D’s new data:

RA1: retransmissions are seen as “normal” data and sent
when the scheduler next selects the stream: ABCDABCD.

RA2: retransmissions are given highest precedence, and
use the default RR scheduling approach: ABABCDCD.

RA3: retransmissions are given highest precedence, and
useanon-default sequential schedulingapproach:AABBCDCD.

RA4: retransmissionsexplicitly take intoaccountapplication-
layerprioritization (e.g., newdata forahighpriorityH3stream
(C) could get precedence over retransmissions of lower prior-
ityH3 streams (AandB,with lowest priorityD)):CCABABDD.
Here we find that most implementers do give retransmissions
a higher priority: 10/13 do RA2 and 1/13 (mvfst 1 ) does RA3,
while just 2/13 employ RA1.We have not yet observed RA4
in the wild, though this is likely because only 3/15 stacks
integrate QUIC stream scheduling with H3 semantics at this
point. It is unclear which RA performs best in practice.

3.3 Packetization
While thebinaryQUICandH3 frameandpacket structuresare
well-defined in the specifications, there are many variations
in how they can be utilized, sized and combined. For example,
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H3 defines theHEADERS and DATA frames [7]. These are in
turn passed to theQUIC layer, whereby typicallyQUIC has no
knowledge of theH3 semantics: it treatsH3-level data on each
QUIC stream as an ordered but opaque byte sequence. These
bytes are then put insideQUIC-level STREAM frames for trans-
port. Practically, this means thatmultiple H3-level frames can
be aggregated together inside a single QUIC STREAM frame,
which is good for efficiency. We find that 9/13 servers con-
sistently do this, but that 4/13 tend to instead pack HEADERS
andDATA frames into separate STREAM frames. In stress tests
that request hundreds of very small files (<1kB), 6/13 servers
started showing even more inefficient behaviour, packing all
H3 frames in separate STREAMframes, and even in tinyQUIC
packets. If we define goodput efficiency as the amount of use-
ful transportedH3-level data (e.g., image file bytes) divided by
the total amount of bytes on the wire (including QUIC andH3
framing overhead), we find that most stacks achieve 95-97%
efficiency when downloading larger files, which plummets
to about 90% for most when downloading many smaller files,
with the worst case only achieving 83%.

A part of this is the sizing of H3 DATA frames. While
QUIC STREAM frames cannot span multiple QUIC packets,
H3 DATA frames can theoretically be up to 4600 Petabytes (as
their length is 64-bit encoded), and thus span many STREAM
frames. For goodput efficiency, fewer and thus larger DATA
frames are best. Here, we find a large heterogeneity. When
downloading files larger than 1MB, 6/13 have DATA frames
larger than1MB, 2/13 between1MBand100kB, and5/13 lower
than 100kB (of which one has the worst case of generating a
new DATA frame for each QUIC packet). Interestingly, we ob-
served two stacks that dynamically sized their DATA frames,
growing larger over time, tied as they are to the current QUIC
Flow Control and Congestion Window values (§3.1, §3.4).
While this seemed like intentional behaviour, it again turned
out to be due to unexpected cross-layer code interactions.
Finally, QUICmandates a minimumUDP payload size of

1200 bytes [24], but it is generally understood that larger sizes
significantly improve efficiency [20, 25]. It is best practice to
start with a small packet size and perform Path MTUDiscov-
ery (PMTUD) [24]. Still, we find that at this time, just 3/14
stacks implement PMTUD, all of themusing the naivemethod
of sending a single 1400-1500 byte QUIC packet containing
mainly PADDING instead of the more advanced DPLPMTUD
approach [15]. The need for PMTUDwas emphasized to us
by Facebook, who find many networks with higher loss rates
if QUIC packets are even a few dozen bytes larger.

3.4 Congestion Control
In terms of recovery (loss detection and congestion control
(CC)), QUIC inherits most of TCP’s concepts and decades
of best practices (e.g., selective acknowledgements, pacing,

tail loss probes). The QUIC recovery text [22] aggregates a
discussion of all these concepts with how they can be practi-
cally adapted to QUIC peculiarities such as its integrated TLS
handshake. For a practical example with pseudo-code, the
somewhat outdated, yet well-understood New Reno CC [22]
is used. As such, the text provides a good starting point for
adapting other CCs to QUIC.We find that while most of the
stacks have implemented QUIC’s New Reno variant (9/15),
especially many of the larger companies indeed also support
moremodern CCs: 6/15 implement Cubic (4 with hystart [12],
1 with tweaks for satellite networks [21]), 4/15 implement
BBRv1 and 3/15 go further with approaches like COPA [6] or
BBRv2 [10]. Facebook deploys BBRv1, Cloudflare Cubic [12].
An important CC variable is the initial Congestion Win-

dow (cwnd), which controls how many bytes an endpoint
can send back in the first flight (before growing the cwnd
in “slow start”). The QUIC text’s advice of an initial cwnd of
13kB-15kB is followed by 10/15 stacks, while 3/15 choose a
much larger window of 40kB+, though these values are more
heterogeneous in actual deployments [36]. For example, we
learned that Facebook uses machine learning to tune their
init cwnd, while f5 includes a cwnd estimate in their address
validation token for resumed connections (§3.5).

Additionally, the QUIC text strongly encourages the use of
pacing (i.e., spreading out packets over an entire RTT instead
of sending them in a single burst with each cwnd increase,
which is thought to lower packet loss [5]). Interestingly, only
8/15 currently support this. This ismainly due to the complex-
ity of the technique and lacking support in the Linux kernel
in combinationwith other optimization techniques (e.g., GSO
combined with SO_TXTIME [14, 20, 25]).
Finally, the performance of a CC can be influenced heav-

ily by the frequency with which the receiver acknowledges
(ACKs) data. QUIC recommends sending an ACK for every 2
received packets [22]. Just 3/12 follow this recommendation,
with 2/12 ACKing every packet instead, and 7/10 ACKing
every 2-10 packets. This latter behaviour is mostly due to
implementations reading up to 10 packets at a time from the
socket. It is however also understood that ACK processing is
expensive in QUIC [19, 25] and 4/15 are experimenting with
the ACK Frequency extension to reduce overhead [23]

3.5 0-RTT
One of the key new features in QUIC is the zero RTT (0RTT)
connection setup [17], which allows the exchange of applica-
tion data (e.g., anH3GET and its (partial) response) in the first
flight (compared to third or fourth in TCP+TLS). This derives
from TLS 1.3, which allows exchanging Pre-Shared encryp-
tion Keys in Session Tickets during a first “1RTT” connection
(where data can only be exchanged from the second flight
onward), which is then used to enable 0RTT on a subsequent
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Figure 3: 0-RTT request and response size variations.
We assume an initial cwnd of 10 packets at the server.

connection [39], see Figure 3. Despite being a high-profile
feature, just 13/18 implement it, of which we tested 9.
One of the reasons for this lower uptake is that 0RTT is

complex to implement securely, as it is vulnerable to (HTTP)
replay and UDP amplification/reflection attacks [24, 39]. This
latter category is possible when the attacker spoofs their IP
address and sends a (small) 0RTT request for a (large) resource
to the server. If the server simply starts sending the (entire)
resource to the spoofed victim IP, it could be used in a (D)DoS
attack. To prevent this, a QUIC server MUST NOT send more
than 3 times as much data as it has received from the client
until the path is validated (confirming the IPwas not spoofed).
This validation can happen in 3 main ways (ZRs) (Figure 3):

ZR1 waits for a reply from the client to the early 0RTT
server packets. This has the large downside that the 0RTT
response will be rather small (just 5kB-7kB if the client sends
its initial request in 1-2 packets). We feel this significantly
reduces 0RTT’s usefulness for typicalweb browsing use cases.

ZR2 alleviates this by sending anAddress Validation token
in QUIC’s NEW_TOKEN frame [24]. This is sent encrypted
by the server in the first connection and used by the client
for the second, so the server can consider the path validated
immediately. This allows it to ignore the 3X limit and send
more data, typically up to its initial cwnd (10-40kB §3.4).

ZR3 is mainly a legacy equivalent of ZR2 which securely
encodes the client’s IP address inside the TLS Session Ticket.
ZR1 and ZR2 are both used in 6/13 stacks, but ZR3 only by
Facebook, who have plans to migrate to the superior ZR2.
One way to improve upon ZR1 would be for the client to

send additional data along with the 0RTT request (e.g., in
the form of padding), see Figure 3. This would in turn allow
the server to reply with more data while still adhering to the
3X limit. While testing whether the stacks would respond
well to this, we found several high impact bugs. One stack
simply did not adhere to the 3X limit, replying up to their
46kB initial cwnd to a 1.2kB request (a 36X amplification).
Another did apply the 3X limit, but forgot to check its initial
cwnd for 0RTT responses (e.g., replying with 30kB 0RTT data

to a 10kB request even though their cwnd was only 15kB).
Finally, one stack forgot to account retransmissions of lost
packets in its 3X limit. If an attacking client never replied to
anything after its first 1.2kB, this stack sent up to 17kB of
(retransmitted) data (14X). Most other servers did adhere to
the 3X limit and also sent more data in response to a client
sending additional padding. As such, we recommend clients
pad their 0RTT requests to about 4kB-5kB (higher values
will give diminishing returns as most servers utilize an initial
cwnd of about 13kB (§3.4)). This should not be needed for
servers employing ZR2 (which should be preferred over ZR3).

4 DISCUSSION&CONCLUSION
In this work, we have discussed 15 different QUIC implemen-
tations across a multitude of behaviours (see Table 1). Even
though these stacks all implement the exact same QUIC/H3
protocols,wehave shown that their low-level implementation
choices lead to a large behavioural heterogeneity between
them. We believe this has important consequences for the
ways in which QUIC/H3 can and should be evaluated.

While not all considered aspects might have a large im-
pact on most types of protocol evaluation results (e.g., H3
DATA frame sizing or PMTUD support for Web performance
research [9]), other discussed features, such as Flow Control,
Congestion Control, Prioritization and 0 RTT can all lead to
significant differences in results. Yet, these are aspects that
historically we rarely see evaluated or discussed in related
work focusing on for exampleH2 [18, 41] and also gQUIC [16].
In order to be able to draw solid conclusions about QUIC/H3
as protocols, we feel that researchers should show scientific
rigor in twomainways. Firstly, byperformingdeep root-cause
analysis of all observed high-level behaviours. Secondly, by
comparing multiple QUIC implementations. This especially
holds true in the next few years (2020-2023), as not all imple-
mentations will be fully optimized or complete by the time
QUIC/H3 are finalized. Even later on, we suspect stacks will
remain heterogeneous and deep insight will remain key in
researching and optimizing QUIC and H3.

We believe that ourmethodology of using the qlog and qvis
tools [26, 29] has proven its potential to form the basis of a
framework to both analyze and extend or improve QUIC/H3
stacks. This is also evidenced by the fact that several QUIC
implementers have lately started using these tools to validate
their approaches [12].As currently 12/18QUIC stacks support
qlog, these tools are broadly available and ready to use.
Overall, we posit that QUIC stacks are becoming mature

enough to be deployed and researched, but results from high-
level metrics should be thoroughly root-cause analyzed if re-
searcherswant to drawbroad conclusions onQUIC/H3 as pro-
tocols. There are many opportunities for future research on
QUIC behaviour tuning, especially around FlowControl,Mul-
tiplexing/H3 Prioritization, and Retransmission approaches.
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