
A QUIC
Tutorial
SIGCOMM 2020

Jana Iyengar
Fastly

Ian Swett
Google

Robin Marx
Hasselt

University

Zoom:
raise your hand for questions here
one of us will monitor

Slack:
open for clarification questions, discussion
prefer over zoom chat

Questions and interruptions welcome!
this is only as useful to you as you make it

Logistics

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly and quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

Jana Iyengar
Distinguished Engineer, Office of the CTO, Fastly
Editor of IETF QUIC specs
Chair of IRTF Internet Congestion Control research group
Working on transport since ~2000, QUIC since 2013

Ian Swett
Staff Engineer and QUIC Tech Lead, Google
Editor of IETF QUIC specs
Working on QUIC since 2012
TL for QUIC BBR and BBRv2

Robin Marx
PhD student, Hasselt University in Belgium
Focus on HTTP/2, QUIC, and HTTP/3 performance

creates qlog and qvis debugging tools
Co-founder of LuGus Studios; multiplayer game programmer

Who are we?

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly and quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

A new transport protocol
built for needs of today’s Internet and the modern web
not what TCP was built for

UDP-based, because UDP gets through most networks
QUIC re-creates TCP services from scratch
(loss recovery, congestion control, flow control, etc.)

Has encryption baked in, data/metadata are protected
combines transport and crypto handshakes for latency
uses TLS/1.3 for key negotiation

What is QUIC?

HTTP/3 is HTTP over QUIC

Feature-parity with HTTP/2
request multiplexing, header compression, push

… except for priorities
which is being dropped in HTTP/2 by HTTP working group
a common scheme is being devised for HTTP/2 and /3

What is HTTP/3?

Protocol for HTTPS transport, deployed at Google starting 2014
Between Google services and Chrome / mobile apps
35% of Google's egress traffic (7% of Internet) in 2017

IETF QUIC working group formed in Oct 2016
Modularize and standardize QUIC

A QUIC GQUIC history

QUIC has matured significantly at the IETF
Use of TLS 1.3
Overhaul of the handshake
New packet headers and structure
Packet number encryption
Connection IDs
Unidirectional and bidirectional streams
HTTP mapping

Operator concerns

A QUIC history

QUIC comes in a long line of work on web transport

TLS

HTTP

TCP

IP

TLS

HTTP

TCP

IP

connection
reliability
congestion control
ordered byte-stream

TLS

HTTP

TCP

IP

connection
reliability
congestion control
ordered byte-stream

authentication
encryption

TLS

HTTP

TCP

IP

connection
reliability
congestion control
ordered byte-stream

authentication
encryption

many many objects
needs low latency

HTTP/1.0
: independent file transfers
 (open, write, close)

The HTTP Story

HTTP/1.0
HTTP/1.1

: connection persistence
: pipelining

The HTTP Story

HTTP/1.0
HTTP/1.1

Then around 1998 ...

The HTTP Story

“[...] poor performance due to [...] round trips required to open and close
each TCP connection”

“[...] does not adequately support simultaneous rendering of inlined objects”

“[...] or allow for graceful abortion of HTTP transactions without closing
the TCP connection”

“[...] do not share congestion information across multiple simultaneous
connections”

“[...] nor does it provide suitable fairness between protocol flows”

“[...] poor performance due to [...] round trips required to open and close
each TCP connection”

“[...] does not adequately support simultaneous rendering of inlined objects”

“[...] or allow for graceful abortion of HTTP transactions without closing
the TCP connection”

“[...] do not share congestion information across multiple simultaneous
connections”

“[...] nor does it provide suitable fairness between protocol flows”

handshake latency

“[...] poor performance due to [...] round trips required to open and close
each TCP connection”

“[...] does not adequately support simultaneous rendering of inlined objects”

“[...] or allow for graceful abortion of HTTP transactions without closing
the TCP connection”

“[...] do not share congestion information across multiple simultaneous
connections”

“[...] nor does it provide suitable fairness between protocol flows”

handshake latency

parallelism

“[...] poor performance due to [...] round trips required to open and close
each TCP connection”

“[...] does not adequately support simultaneous rendering of inlined objects”

“[...] or allow for graceful abortion of HTTP transactions without closing
the TCP connection”

“[...] do not share congestion information across multiple simultaneous
connections”

“[...] nor does it provide suitable fairness between protocol flows”

handshake latency

parallelism

scheduling

“[...] poor performance due to [...] round trips required to open and close
each TCP connection”

“[...] does not adequately support simultaneous rendering of inlined objects”

“[...] or allow for graceful abortion of HTTP transactions without closing
the TCP connection”

“[...] do not share congestion information across multiple simultaneous
connections”

“[...] nor does it provide suitable fairness between protocol flows”

handshake latency

parallelism

scheduling

request cancellation

“[...] poor performance due to [...] round trips required to open and close
each TCP connection”

“[...] does not adequately support simultaneous rendering of inlined objects”

“[...] or allow for graceful abortion of HTTP transactions without closing
the TCP connection”

“[...] do not share congestion information across multiple simultaneous
connections”

“[...] nor does it provide suitable fairness between protocol flows”

handshake latency

parallelism

scheduling

request cancellation

many congestion controllers

“[...] multiplexing multiple lightweight HTTP transactions

“[...] multiplexing multiple lightweight HTTP transactions

 onto the same underlying transport connection

“[...] multiplexing multiple lightweight HTTP transactions

 onto the same underlying transport connection

 and deploying smart output buffer management”

The Transport Story

T/TCP (1994)

The Transport Story

T/TCP (1994)
TCP Session (1998)

The Transport Story

T/TCP (1994)
TCP Session (1998)

The Transport Story

“[...] decouples TCP's ordered byte-stream service abstraction
from its congestion control and loss recovery mechanisms. It
integrates the latter mechanisms across the set of concurrent
connections between a pair of hosts [...]”

T/TCP (1994)
TCP Session (1997)
Congestion Manager (1998)

The Transport Story

T/TCP (1994)
TCP Session (1997)
Congestion Manager (1998)

The Transport Story

“[...] framework integrates congestion management across
all applications and transport protocols [...]”

“[...] an ensemble of concurrent TCP connections can
effectively share bandwidth and obtain consistent
performance […]”

The Transport Story

T/TCP (1994)
TCP Session (1997)
Congestion Manager (1998)
SCTP (2000)

T/TCP (1994)
TCP Session (1997)
Congestion Manager (1998)
SCTP (2000)
...
...

The Transport Story

Rise of the Middle

mid 1990s: the network started to change

Network Address Translators (NATs): IP address scarcity
Firewalls: Protection and policy
Protocol accelerators (PEPs): Improve transfer perf

Eroding End-to-End

Network devices started to read/modify end-to-end information
NATs: transport port number, checksum
Others: most transport header fields, state machine

Eroding End-to-End

Network devices started to read/modify end-to-end information
NATs: transport port number, checksum
Others: most transport header fields, state machine

“Middleboxes”

“[...] intermediary device performing functions other than the
normal, standard functions of an IP router on the datagram path
between a source host and destination host” - RFC 3234

Middleboxes

Middleboxes:
Accidental architectural control points of the Internet

The Transport Story

T/TCP (1994)
TCP Session (1997)
Congestion Manager (1998)
SCTP (2000)
...
...

SST (UDP-based) (2007)
Minion (TCP and TLS based) (2011)

The Transport Story

T/TCP (1994)
TCP Session (1997)
Congestion Manager (1998)
SCTP (2000)
...
...

SST (UDP-based) (2007)
Minion (TCP and TLS based) (2011)

TCP Fast Open (2009 - 2014)

The Transport Story

T/TCP (1994)
TCP Session (1997)
Congestion Manager (1998)
SCTP (2000)
...
...

SST (UDP-based) (2007)
Minion (TCP and TLS based) (2011)

TCP Fast Open (2009 - 2014)
MPTCP (2009 - 2013)

HTTP/1.0
HTTP/1.1
HTTPng (?)

The HTTP Story (contd.)

HTTP/1.0
HTTP/1.1
HTTPng (?)
…
…
…
…
…
SPDY

The HTTP Story

HTTP/1.0
HTTP/1.1
HTTPng (?)
…
…
…
…
…
SPDY

The HTTP Story

HTTP/1.0
HTTP/1.1
HTTPng (?)
…
…
…
…
…
SPDY
 streams
 multiplexing
 flow control
 priorities

The HTTP Story

HTTP/1.0
HTTP/1.1
HTTPng (?)
…
…
…
…
…
HTTP/2
 streams
 multiplexing
 flow control
 priorities

The HTTP Story

TLS

HTTP/2

TCP

IP

Latency = $$

Everything’s going over HTTP
Video over HTTP, DNS over HTTP, ...

HTTP needs to scale
laterally: wide API, broad applicability
vertically: no delays and inefficiencies

Persisting Demands on Web Architecture

MILLISECOND

How do we eliminate inefficiences in the web stack?
In HTTP?
In TLS?
In TCP?

In the layering?

Google’s GQUIC Experiment

TLS

HTTP/2

TCP

IP

UDP

GQUIC

QUIC Crypto

The QUIC Standard

TLS

HTTP/2

TCP

IP

UDP

QUIC

HTTP/3

TLS 1.3

The QUIC Standard

TLS

HTTP/2

TCP

IP

draft-ietf-quic-transport
draft-ietf-quic-recovery
draft-ietf-quic-tls

UDP

draft-ietf-quic-http

TLS 1.3

Site performance
reduces page load latency, improves video QoE

Userspace transport
offers control, agility
enables architecture exploration, such as “Direct Server Return”

Deployment agility of new features
ossification protection with versioning, encryption, GREASEing

Why does industry care?

IETF:
specifications in-progress, RFCs likely in 2021

Implementations:
Apple, Facebook, Fastly, Firefox, F5, Google, Microsoft ...

Server deployments have been going on for a while
Akamai, Cloudflare, Facebook, Fastly, Google …

Clients are at different stages of deployment
Chrome, Firefox, Edge, Safari
iOS, MacOS

QUIC Status

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly and quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

Low latency

Encrypted Transport

Resilient Connections

Why QUIC?

Low latency
eliminates latency of new connections to recently visited sites
eliminates head-of-line blocking in TLS and TCP

Encrypted Transport

Resilient Connections

Why QUIC?

First connection to server

Low-latency handshake

client server

SYN

Hello

Fin, GET /

SYN/ACK

Hello, Cert, Fin

200 OK

TCP + TLS/1.3
ha

nd
sh

ak
e

da
ta

First connection to server

Low-latency handshake

client server

SYN

Hello

Fin, GET /

SYN/ACK

Hello, Cert, Fin

200 OK

TCP + TLS/1.3

client server

Initial, Hello

Fin, GET /
Initial, Hello, Cert, Fin

200 OK

QUIC
ha

nd
sh

ak
e

da
ta

ha
nd

sh
ak

e
da

ta

Subsequent connection to the same server

Low-latency handshake

client server

SYN

Hello, GET /

SYN/ACK

Hello, Fin, 200 OK

TCP + TLS/1.3
ha

nd
sh

ak
e

da
ta

Subsequent connection to the same server

Low-latency handshake

client server

SYN

Hello, GET /

SYN/ACK

Hello, Fin, 200 OK

TCP + TLS/1.3

client server

Initial, Hello, GET /

Initial, Hello, Fin, 200 OK

QUIC

ha
nd

sh
ak

e
da

ta

ha
nd

sh
ak

e
da

ta

Transport options exchanged in Transport Parameters
Flow control limits, etc
Sent as extension to TLS handshake

Connection IDs exchanged during handshake
Each endpoint chooses CID (and length) to be used towards it

TLS handshake carried in QUIC packets

Ultimately, QUIC packets flow on wire
Carrying TLS messages, including QUIC options
Why? So that QUIC options are protected

QUIC Handshake

Low latency

Encrypted transport
encryption and privacy are fundamental to QUIC
connections protected from tamper and disruption
most of the headers not even visible to third parties

Resilient Connections

Why QUIC?

HTTP with TLS/TCP

Encrypted transport

source port destination port

sequence number

acknowledgement number

windowhlen flags

urgent pointerchecksum

[options]

type version length

length

application data
(HTTP headers and payload)

HTTP with TLS/TCP

Encrypted transport

source port destination port

sequence number

acknowledgement number

windowhlen flags

urgent pointerchecksum

[options]

type version length

length

application data
(HTTP headers and payload)

source port destination port

sequence number

acknowledgement number

windowhlen flags

urgent pointerchecksum

[options]

type version length

length

application data

CODASPY ‘17

CODASPY ‘17

"the ultimate defense of the end to end mode is end to
end encryption"

David Clark, J. Wroclawski, K. Sollins, and R. Braden, Tussle in Cyberspace:
Defining Tomorrow’s Internet. IEEE/ACM ToN, 2005.

Protocol design maxim

HTTP with TLS/TCP

Encrypted transport

HTTP with QUIC

source port destination port

sequence number

acknowledgement number

windowhlen flags

urgent pointerchecksum

[options]

type version length

length

application data
(HTTP headers and payload)

01SRRKPP [dest connection id]

packet number

application data
(HTTP headers and payload)

source port destination port

length checksum

source port destination port

sequence number

acknowledgement number

windowhlen flags

urgent pointerchecksum

[options]

type version length

length

application data

HTTP with TLS/TCP

Encrypted transport

HTTP with QUIC

source port destination port

sequence number

acknowledgement number

windowhlen flags

urgent pointerchecksum

[options]

type version length

length

application data

01SRRKPP [dest connection id]

packet number

application data

source port destination port

length checksum

Low latency

Encrypted transport

Resilient connections
connection migration for “parking lot” problem

using 18-byte connection IDs
improved loss recovery, helping connections over “bad” networks

Why QUIC?

Connection migration

Wifi

Connection migration

Wifi

Cellular

Tracking migrating connections

Dest CID:
0xedc1a

NCID: 0xfe62a
NCID: 0x23aee
NCID: 0x1aeec

Tracking migrating connections

Dest CID:
0x23aee

Dest CID:
0xedc1a

Tracking migrating connections

Packet number used as a nonce for packet encryption
nonce = used once
receiver needs it to decrypt the packet
monotonically increasing, for loss detection and compression

Packet Number Encryption

Packet number used as a nonce for packet encryption
nonce = used once
receiver needs it to decrypt the packet
monotonically increasing, for loss detection and compression

Visible packet number allows for correlation across networks
also, any visible bits ossify in the network

Packet Number Encryption

Packet number used as a nonce for packet encryption
nonce = used once
receiver needs it to decrypt the packet
monotonically increasing, for loss detection and compression

Visible packet number allows for correlation across networks
also, any visible bits ossify in the network

Encrypting packet number would require (another) nonce

Packet Number Encryption

Packet number used as a nonce for packet encryption
nonce = used once
receiver needs it to decrypt the packet
monotonically increasing, for loss detection and compression

Visible packet number allows for correlation across networks
also, any visible bits ossify in the network

Encrypting packet number would require (another) nonce
Idea: encrypted bytes from the packet are random…
therefore, can be nonce!

Packet Number Encryption

Functional Decomposition of Transport

Application
facing functions

Network
facing functions

Setup and
security

functions

Handshake,
Keys,

En/Decryption

Functional Decomposition of QUIC

Streams,
Flow Control

(EXT: Datagrams)

Packetization,
Congestion Control,

Loss Detection,
Connection Migration
(EXT: ACK frequency)

Functional Decomposition of QUIC

Application
facing functions

Network
facing functions

Security
functions

Encrypted

Short header

QUIC Packet Format

Long header

QUIC Packet Format

Long header

QUIC Packet Format

Long header

Short header

QUIC Packet Format

Long header

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly and quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

Wireshark QUIC Demo

Requires up-to-date Wireshark version (v3.3.0-rc)
Get it at: https://www.wireshark.org/download/automated

Requires traffic decryption KEYS
Most QUIC stacks support SSLKEYLOGFILE
https://wiki.wireshark.org/TLS
https://lekensteyn.nl/files/wireshark-tls-debugging-sharkfest19eu.pdf

Easy to get pcaps to play with via QUIC Interop Runner
https://interop.seemann.io

Wireshark currently lacks (full) HTTP/3 support
Should be added in the coming months (August-September 2020)

https://www.wireshark.org/download/automated/
https://wiki.wireshark.org/TLS
https://lekensteyn.nl/files/wireshark-tls-debugging-sharkfest19eu.pdf
https://interop.seemann.io/

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly and quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

Streams are a lightweight abstraction
each is a separate “ordered stream of bytes”
streams are independent wrt ordering/retransmission

⇒ QUIC “removes” Head-of-Line blocking
data needs to be multiplexed onto underlying connection

Two Four types of stream
unidirectional stream
bidirectional stream

Receiver applies flow control to limit data sent in streams
stream flow control limits bytes sent on a stream
connection flow control limits bytes sent across all streams
stream count flow control limits amount of streams

Streams and Flow Control

server initiated
client initiated

Stream multiplexing
and prioritization

https://h3.edm.uhasselt.be

https://h3.edm.uhasselt.be

Short header

QUIC Packet Format

Long header

Frames

Frames

Frames

Frames

Frames

STREAM Frame

QUIC Packetization: Example

Key Phase

Packet Number

Spin Bit

Header = 0b01

QUIC Packet

Dest Conn ID

QUIC Packetization: Example

Key Phase

Packet Number

Spin Bit

Header = 0b01

STREAM Frame STREAM Frame ACK Frame

QUIC Packet

Dest Conn ID

QUIC Packetization: Example

Key Phase

PN = 56

Spin Bit

Header = 0b01
STREAM Frame

STREAM Frame ACK Frame

QUIC Packet

Dest Conn ID

Stream ID: 5
Offset: 1123
Length: 500
Fin: False

Application
Data

QUIC Packetization: Example

Key Phase

PN = 56

Spin Bit

Header = 0b01
STREAM Frame

ACK Frame

QUIC Packet

Dest Conn ID

STREAM Frame

Stream ID: 8
Length: 300
Fin: False

Application
Data

Stream ID: 5
Offset: 1123
Length: 500
Fin: False

Application
Data

ACK Frame

Highest Packet
Number seen so far

Time since Largest
Acked was received

Contiguous from
Largest Acked

QUIC Packetization: Ack Example

Packets received: 1 … 125
Time since largest received: 25ms

represented as a shifted value (default 3, negotiable)
25ms = 3125us << 3

ACK fields
Largest packet received so far: 125
First Ack Range: 124
Ack Range Count: 0

QUIC Packetization: Example

Key Phase

PN = 56

Spin Bit

Header = 0b01
STREAM Frame ACK Frame

Largest: 125
Ack Delay: 3125
Ack Range: 0
First Range: 124

QUIC Packet

Dest Conn ID

STREAM Frame

Stream ID: 8
Length: 300
Fin: False

Application
Data

Stream ID: 5
Offset: 1123
Length: 500
Fin: False

Application
Data

Packet 56 dropped

Also, Stream 8 was cancelled

QUIC loss detection marks packet 56 as lost
let’s say last packet sent was packet number 74

QUIC Packetization: Loss Example

QUIC Packetization: Example

Key Phase

PN = 56

Spin Bit

Header = 0b01
STREAM Frame

QUIC Packet

Dest Conn ID

Stream ID: 5
Offset: 1123
Length: 500

Application
Data

STREAM Frame

Stream ID: 8
Length: 300

Application
Data

ACK Frame

Largest: 125
Ack Delay: 3125
Ack Range: 0
First Range: 124

QUIC Packetization: Example

Key Phase

PN = 75

Spin Bit

Header = 0b01
STREAM Frame

QUIC Packet

Dest Conn ID

Stream ID: 5
Offset: 1123
Length: 500

Application
Data

STREAM Frame

Stream ID: 8
Length: 300

Application
Data

ACK Frame

Largest: 125
Ack Delay: 3125
Ack Range: 0
First Range: 124

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly and quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly and quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

QUIC debugging challenges

Problem: End-to-end Encryption
Store full packet captures = large
Need to store decryption keys somewhere = insecure
Decryption shows -everything-, including user data = bad for privacy

Solution: structured endpoint logging
Choose which data to log (manage file size + privacy)
Include internal state not sent on network

Still easy to create cross-implementation tooling

Network operators don’t like this “solution”
See spinbit, loss bits, etc.

QUIC tooling : quictrace

https://github.com/google/quic-trace

https://github.com/google/quic-trace

QUIC tooling demo : qlog and qvis

qlog: “ad-hoc standard” logging format
12/18 stacks support it, at least 3 more have plans
JSON-based
https://tools.ietf.org/html/draft-marx-qlog-main-schema-01

qvis: visualization toolsuite
5 different tools / visualizations
also supports pcap files and Chrome’s NetLog files
https://qvis.edm.uhasselt.be

Example files available at:
https://qlog.edm.uhasselt.be/sigcomm/tutorial.html

See also “Visualizing QUIC and HTTP/3 with qlog and qvis” demo Tuesday and Wednesday

https://tools.ietf.org/html/draft-marx-qlog-main-schema-01
https://qvis.edm.uhasselt.be/
https://qlog.edm.uhasselt.be/sigcomm/tutorial.html

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly and quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

ACK - Acknowledgement, multiple different formats
Loss Detection - Detect which packets were lost
Recover - Retransmit lost data and have it acknowledged
RTO - Retransmission Timeout
TLP - Tail loss probe, fires before RTO
PTO - Probe Timeout: QUIC’s merge of TLP and RTO

Terminology

121

Loss Detection and
Loss Recovery

Receiver sends an ACK every time a packet is received
Increases ‘Acknowledgment Number’ when the data is received in order
‘Acknowledgement Number’ commonly known as Cumulative ACK

Sender retransmits following piece of data on 3 identical ACKs
One round trip later, hopefully that(and more data) is acknowledged

Can only recover from one lost packet per round trip

RTO fires SRTT+4*RTTVar later if 3 dupacks are not received
RTO collapses the congestion window to the min
Immediately declares all packets lost

TCP - RFC793

123

https://tools.ietf.org/html/rfc793

Multiple byte ranges beyond the cumulative ACK offset

FACK (forward acknowledgement) loss detection
Loss is detected when a packet sent 3
packets later is ACKed OR 3 Dupack

Adaptive reordering thresholds common

Recover from multiple losses in a round trip

TCP SACK - RFC2018

124

 +--------+--------+
 | Kind=5 | Length |
 +--------+--------+--------+--------+
 | Left Edge of 1st Block |
 +--------+--------+--------+--------+
 | Right Edge of 1st Block |
 +--------+--------+--------+--------+
 | |
 / . . . /
 | |
 +--------+--------+--------+--------+
 | Left Edge of nth Block |
 +--------+--------+--------+--------+
 | Right Edge of nth Block |
 +--------+--------+--------+--------+

https://tools.ietf.org/html/rfc2018

Track transmission time of packets, in addition to sequence number
Avoids RTOs when retransmitted data is lost

Uses Time and Packet thresholds
Replaces Early Retransmit with a timer

First IETF spec to describe TLP
Previously only in a paper, though widely used

Built on existing TCP signals

TCP RACK - draft-ietf-tcpm-rack

125

https://tools.ietf.org/html/draft-ietf-tcpm-rack-08

Key Differences
Monotonically Increasing Packet Numbers
ACK blocks instead of SACK blocks
PTO replaces TLP and RTO
ACK Delay and max_ack_delay
Separate Packet Number Spaces
Persistent Congestion

QUIC - draft-ietf-quic-recovery

126

https://tools.ietf.org/html/draft-ietf-quic-recovery

QUIC packet numbers are monotonic and unique

QUIC uses Packet Numbers, opposed to TCP Sequence Numbers
Indicate transmission order, not delivery order
Removes TCP and SCTP’s retransmission ambiguity

QUIC packets are never* retransmitted
Lost data or frames sent in a new packet

Short Header Packet {
 Header Form (1) = 0,
 Fixed Bit (1) = 1,
 Spin Bit (1),
 Reserved Bits (2),
 Key Phase (1),
 Packet Number Length (2),
 Destination Connection ID (0..160),
 Packet Number (8..32),
 Packet Payload (..),
 }

Sequence of N ACK blocks
Number of blocks limited by datagram size
Can detect a practically unlimited number of losses

Includes the most recently received packets
Constant forward progress

No Reneging
Simplifies implementations

Ack blocks

128

ACK Frame {
 Type (i) = 0x02..0x03,
 Largest Acknowledged (i),
 ACK Delay (i),
 ACK Range Count (i),
 First ACK Range (i),
 ACK Range (..) ...,
 [ECN Counts (..)],
 }

Combines TLP and RTO into one mechanism

 Period = smoothed_rtt + max(4*rttvar, kGranularity) +
max_ack_delay

Updated every time a packet is sent or ACK is received
Set from the last ack-eliciting sent packet

Prefer sending new data to avoid spurious transmissions

PTO

129

ACK Delay in the ACK frame communicates introduced delay
Used in calculations of Smoothed RTT and RTTVar

max_ack_delay specifies the maximum intended ACK Delay
Communicated in Transport Parameters during the TLS handshake
Enables removing MinRTO
Similar to the TCP MAD

ACK Delay and Maximum Ack Delay

130

ACK Frame {
 Type (i) = 0x02..0x03,
 Largest Acknowledged (i),
 ACK Delay (i),
 ACK Range Count (i),
 First ACK Range (i),
 ACK Range (..) ...,
 [ECN Counts (..)],
 }

https://tools.ietf.org/html/draft-wang-tcpm-low-latency-opt-00

QUIC has Initial, Handshake and ApplicationData packet number spaces
ApplicationData = 0-RTT and 1-RTT packets
After handshake confirmation, only ApplicationData is active

Loss detection is per-PN space
Loss detection requires the peer to acknowledge a subsequent packet
Acknowledging a packet requires decryption keys

Congestion control and RTT span PN spaces
Congestion control and RTT measurements are on a path

Separate Packet Number Spaces

131

Initial, PN=1
Handshake,
PN=1

Initial,
PN=2Handshake,

PN=2

Congestion Control

AIMD - Additive increase, multiplicative decrease

Slow Start
congestion_window += packet.size

Congestion avoidance (1 packet increase per acknowledged CWND)
congestion_window += max_datagram_size * packet.size

 / congestion_window
Upon Loss

congestion_window /= 2

NewReno style congestion control

133

PTO does not change the congestion window upon expiry
Unlike TCP’s RTO, which collapses the congestion window

Instead, QUIC waits until packets are lost over 3 * PTO period
Similar to TCP sending TLPs twice before firing RTO

Why time instead of sequential PTOs?
Because the window isn’t reduced, applications can continue to send
This can indefinitely delay the first PTO in some circumstances

Persistent Congestion replaces RTO response

134

Signals
OnPacketSent
OnPacketsAcked
CongestionEvent - Upon lost packet or ECN

Other commonly implemented Congestion Controllers
Cubic
BBR
BBRv2

Signals are generic

135

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly, quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

Interface for congestion controllers:
https://github.com/h2o/quicly/blob/master/include/quicly/cc.h

Example implementations:
https://github.com/h2o/quicly/blob/master/lib/cc-reno.c
https://github.com/h2o/quicly/blob/master/lib/cc-cubic.c

Pacing is a TODO in quicly, might change the interface

Contributions welcome!
Cubic is thanks to Leo Blöcher (Aachen University)

Congestion Controllers in quicly (C)

137

https://github.com/h2o/quicly/blob/master/include/quicly/cc.h
https://github.com/h2o/quicly/blob/master/lib/cc-reno.c
https://github.com/h2o/quicly/blob/master/lib/cc-cubic.c

struct st_quicly_cc_impl_t {

 quicly_cc_type_t type;

 void (*cc_on_acked)(quicly_cc_t *cc, const quicly_loss_t *loss, uint32_t bytes,

 uint64_t largest_acked, uint32_t inflight,

 int64_t now, uint32_t max_udp_payload_size);

 void (*cc_on_lost)(quicly_cc_t *cc, const quicly_loss_t *loss, uint32_t bytes,

uint64_t lost_pn, uint64_t next_pn, int64_t now,

 uint32_t max_udp_payload_size);

 void (*cc_on_persistent_congestion)(quicly_cc_t *cc, const quicly_loss_t *loss, int64_t now);

};

Congestion Controllers in Quicly (C)

138

Events from SendAlgorithmInterface

 virtual void OnPacketSent(QuicTime sent_time,
 QuicByteCount bytes_in_flight,
 QuicPacketNumber packet_number,
 QuicByteCount bytes,
 HasRetransmittableData is_retransmittable) = 0;

 virtual void OnCongestionEvent(bool rtt_updated,
 QuicByteCount prior_in_flight,
 QuicTime event_time,
 const AckedPacketVector& acked_packets,
 const LostPacketVector& lost_packets) = 0;

Congestion Controllers in Chromium Quiche(C++)

139

https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=108?q=sendalgorithmin&ss=chromium&gsn=OnPacketSent&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23cmM13Ng6jSWxFyRiAf_GTFl9tkWYtSlWwuJZC6VHJN8
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_time.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=38
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=108?q=sendalgorithmin&ss=chromium&gsn=sent_time&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23D0g3WYcFe8PJSXdHg1jzE0VOfZlQkvYY-_rDtfSalVE
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_types.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=39
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=109?q=sendalgorithmin&ss=chromium&gsn=bytes_in_flight&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%232SYoxXO81VlSyotW27Ol9ayaO8dZqYG5waqIuZurWMU
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_packet_number.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=21
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=110?q=sendalgorithmin&ss=chromium&gsn=packet_number&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23e8yyZIpCImFr9EgcUmldqGCyi7fudHAzfRl_U_P4lDo
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_types.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=39
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=111?q=sendalgorithmin&ss=chromium&gsn=bytes&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%237qzqq8HCgLQAOqIoh9qGnWEJALx77ch8ZHBFJ53PYvk
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_types.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=189
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=112?q=sendalgorithmin&ss=chromium&gsn=is_retransmittable&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23FUBiW7ECuNDHB14McW6LE4aF5nwzL2nErqdmkHEqw9U
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=98?q=sendalgorithmin&ss=chromium&gsn=OnCongestionEvent&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23WIG15iSC6R5cNm91KVAkVEWxL5NWSbUTFP2fQ4A0gZs
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=98?q=sendalgorithmin&ss=chromium&gsn=rtt_updated&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23BUFdOhROgPK8hGeNBYfWvFQBl2RDGcp7HJerJUFDojw
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_types.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=39
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=99?q=sendalgorithmin&ss=chromium&gsn=prior_in_flight&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23WyJGdQdeSBx9uP6UuCLOd7GPai3V-hIqViyHO0dEOSk
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_time.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=38
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=100?q=sendalgorithmin&ss=chromium&gsn=event_time&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23D0GvXGKXDWzyZX9eOsiKDrPz7-n9iccB9Mi2yZ582gI
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_types.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=571
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=101?q=sendalgorithmin&ss=chromium&gsn=acked_packets&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23r4dL1aKsZIFmllnHElKgTMg8rFRL1kHXtR1gXV5WVnI
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_types.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=588
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=102?q=sendalgorithmin&ss=chromium&gsn=lost_packets&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23aHQDr6teO0HF6HmM9lndkR69EJkhQoiuLGmkpRclqdk

When and how fast to send from SendAlgorithmInterface

virtual bool CanSend(QuicByteCount bytes_in_flight) = 0;

ie: return bytes_in_flight < congestion_window

virtual QuicBandwidth PacingRate(QuicByteCount bytes_in_flight) const = 0;

Window-based: C*(congestion_window / smoothed_rtt)
Bandwidth-based: C*bandwidth

Congestion Controllers in Chromium Quiche(C++)

140

https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=126?q=sendalgorithmin&ss=chromium&gsn=CanSend&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23oEN6aJkwnKw7-rhMnyLvxsmZo__fhdTrbBkkt73ptRA
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_types.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=39
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=126?q=sendalgorithmin&ss=chromium&gsn=bytes_in_flight&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23o93VkWnxY0jff-KhYRZtwIB-XEeFMeJuHbVMF7CHs_A
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_bandwidth.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=23
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=129?q=sendalgorithmin&ss=chromium&gsn=PacingRate&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23v42bonC2YJI2F1SuF1pwgxQ0L7WosaNxC-W-XS4QF_0
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/quic_types.h;drc=b0973bfe0a561f5d40790c35131e287b4b7143ec;l=39
https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/send_algorithm_interface.h;bpv=1;bpt=1;l=129?q=sendalgorithmin&ss=chromium&gsn=bytes_in_flight&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fnet%2Fthird_party%2Fquiche%2Fsrc%2Fquic%2Fcore%2Fcongestion_control%2Fsend_algorithm_interface.h%23ijCwby_kEd_7Y8PopaLd3r3zuh9RR3s0EfXiNk3oei0

BbrSender
ACM Queue 2016 Paper

Congestion Controllers in Chromium Quiche(C++)

141

https://source.chromium.org/chromium/chromium/src/+/master:net/third_party/quiche/src/quic/core/congestion_control/bbr_sender.h
https://research.google/pubs/pub45646/

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly and quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

Extending QUIC

143

QUIC uses transport parameters to negotiate extensions
They may be a simple bool indicating support
Or they one or more values

New Frames in QUIC MUST be negotiated
Otherwise the peer will close the connection upon receipt

144

QUIC follows TCP RFC 5681
Recommends ACK every 2 packets

In practice, ACK collapsing (thinning) is widespread for TCP
at endhosts
by middleboxes

These optimizations are critical for
high bandwidth links
highly asymmetric links (satellite)

QUIC packets are encrypted, so middleboxes can’t do it

Example 1: Changing the ACK frequency

https://tools.ietf.org/html/rfc5681

145

Sender: Sender of ack-eliciting packets
Receiver: Sender of ACK-only frames in response
Assumption:

Receiver is naturally incented to ACK minimally
Sender is naturally incented to process fewer ACKs
Sender knows its controller’s tolerance / desire

Design: Frame sent from Sender to Receiver to change receiver’s
ACK behavior

Draft: draft-iyengar-quic-delayed-ack

Proposal

https://tools.ietf.org/html/draft-iyengar-quic-delayed-ack-00

146

Transport Parameter: min_ack_delay (0xde1a)
the minimum amount of time (in microseconds)
by which the endpoint can delay an acknowledgement

Used for negotiating use of this extension

Negotiating with a Transport Parameter

147

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0xAF (i) …
+-+
| Sequence Number (i) …
+-+
| Packet Tolerance (i) …
+-+
| Update Max Ack Delay (i) …
+-+
| Ignore Order (8)|
+-+-+-+-+-+-+-+-+-+

0xAF : Frame Type

ACK_FREQUENCY Frame

148

QUIC provides and HTTP/3 uses Streams
Streams are by default reliable

DATAGRAM is a way to transport data which is unreliable by default
Limited to what fits into a single packet
Congestion controlled, but not flow-controlled

Draft: draft-ietf-quic-datagram

Example 2: Unreliable sub-packet payloads

https://tools.ietf.org/html/draft-ietf-quic-datagram

149

Transport Parameter: max_datagram_frame_size(0x0020)
Maximum datagram frame size in bytes

Example 2: Negotiating

150

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0x0020 (i) …
+-+
| [Length (i)] ...
+-+
| Datagram Data (*) ...
+-+

0x0020 : Frame Type

DATAGRAM Frame

Plan
Start - End Topic

1 1:40 - 1:58 QUIC’s intellectual heritage

2 2:00 - 2:18 QUIC handshake, headers, connection migration

3 2:20 - 2:38 Wireshark demo and tutorial

4 2:40 - 2:58 QUIC streams, flow control, frames, packetization

5 3:00 - 3:18 BREAK

6 3:20 - 3:38 qlog and qvis demo and tutorial

7 3:40 - 3:58 QUIC loss detection and congestion control: how different from TCP?

8 4:00 - 4:18 Build your own congestion controller. Code walkthrough: quicly and quiche

9 4:20 - 4:38 Extending QUIC: transport parameters and extensions (Ack Frequency)

10 4:40 - 5:00 Open Discussion, Q & A

